PDA

Просмотр полной версии : Постоянная Планка в Статистической физике



Шаляпин А.Л.
05.04.2011, 09:22
ЗАГАДКА ФУНДАМЕНТАЛЬНОЙ КОНСТАНТЫ ФИЗИКИ – ПОСТОЯННОЙ ПЛАНКА

Полный текст - http://osh9.narod.ru/stat/post.htm

На протяжении ХХ века физики ломали голову над тем: чем обусловлена величина постоянной Планка h или постоянной тонкой структуры a. Какова природа h? Или это квант действия DS , введенный Планком в атомную физику, или механический момент L в атомах, который следует из уравнения Шредингера, или величина, определяющая длину волны де Бройля h/mv, или величина, определяющая импульс электрона ћ k в кристаллах, или спин элементарных частиц s , кратный ћ/2, или минимальный фазовый объем DW в статистической физике микромира и т.д. ? Вопросов накопилось, как мы видим, немало. Попытаемся в этом разобраться.

В соответствии с теоремой Лиувилля постоянная Планка h может действительно претендовать на минимально возможный фазовый объем для функции распределения электронов по координатам и импульсам в самых разнообразных прикладных задачах. В декартовых координатах элементарный фазовый объем DW выглядит так:

DW = Dpx Dpy Dpz Dx D yDz, (1)

при этом проекции импульсов px, py, pz и координаты частицы x,y,z рассматриваются как независимые динамические переменные.

Как же смог сформироваться в природе такой минимальный фазовый объем, который не может обратиться в нуль? Чтобы это понять, необходимо учесть стохастический характер движения электронов в эфире, атомах, молекулах и т.д. Свободные электроны не просто летят по прямым траекториям, а постоянно подвержены воздействию электромагнитных флуктуаций физического вакуума, т.е. так называемых “нулевых колебаний” вакуума. На более простом классическом языке это можно выразить так: электроны подвержены воздействию случайных волн эфира, которые заставляют электроны “дрожать”, т.е. совершать своеобразное квазиброуновское движение в вакууме.

В результате таких воздействий импульсы и координаты электронов изначально разбросаны случайным образом вблизи некоторых средних значений, измеряемых в экспериментах. По этой причине, например, невозможно все электроны при помощи кулоновского поля направить точно в центры атомных ядер. Выражаясь образным языком, можно сказать, что электрон всегда выступает в роли “плохого стрелка”. Подавляющее большинство электронов наверняка “промахнутся”, т.е. пройдут где-то вблизи ядер, но будут захвачены кулоновским полем ядер и продолжать случайное движение в окрестности этих ядер. Примерная картина такого движения для атома водорода представлена на рис.3.1.

Поскольку минимальный фазовый объем DW для атомных масштабов достаточно велик, а размеры ядер очень малы, то лишь очень редким электронам удастся угодить в ядро, да и то, наверняка, не в “десятку”, поскольку вероятность такого события практически равна нулю.

Шаляпин А.Л.
09.06.2013, 12:11
Здесь начинаются Основы Фундаментальной Физики.