PDA

Просмотр полной версии : Классическая физика успешно выводит Динамическое уравнение Шредингера



Шаляпин А.Л.
11.10.2012, 09:42
ВЫВОД ДИНАМИЧЕСКОГО УРАВНЕНИЯ ШРЕДИНГЕРА В РАМКАХ КЛАССИЧЕСКОЙ СТАТИСТИЧЕСКОЙ ФИЗИКИ

http://s6767.narod.ru/stat/shr.htm
http://s6767.narod.ru/k6/k6.htm Параграф 35. Стр. 341.

Рассмотрим систему, состоящую из большого числа атомов, т.е. вещество. Распределение электронной плотности в веществе при стационарном движении электронов описывается стационарной функцией распределения w(x,y,z), уравнение для которой мы вывели в предыдущем параграфе.

Отметим, что под стационарным распределением следует понимать усредненную за бесконечное время наблюдения плотность электронной плазмы в веществе. Однако из-за статистического характера движения электронов электронная плотность не остается постоянной, а непрерывно флуктуирует во времени за счет естественного орбитального движения электронов в атомах и молекулах. Таким образом, для установления более полной динамической картины поведения электронной плазмы необходимо учитывать временную зависимость функции распределения. При этом функция распределения будет иметь вид: w(x,y,z,t). Требуется определить характер этой зависимости и, в частности, зависимость от времени комплексной амплитуды функции распределения ψ(x,y,z,t).

С этой целью воспользуемся законом сохранения полного заряда или числа частиц в веществе, который в дифференциальной форме известен как уравнение непрерывности для плотности заряда q и плотности электрического тока j = v q, где v - средняя скорость электронов,

¶ q /¶ t + div j = 0. (1)

Используя статистический метод описания, выразим плотность электрического заряда через функцию распределения электронной плотности w(x,y,z,t) и заряд электрона e

q(x,y,z,t) = e w(x,y,z,t) = e|ψ(x,y,z,t)| 2. (2)

Подставив это выражение в (1) и сократив заряд e, получим уравнение непрерывности для функции распределения электронной плотности

¶ /¶ t |ψ| 2 + div |ψ| 2 v = 0. (3)

Данное уравнение на языке статистической механики может быть интерпретировано следующим образом. Первый член уравнения означает изменение функции распределения или электронной плотности во времени в данной точке пространства. Второй член имеет смысл потока функции распределения или потока плотности вероятности через малую сферу, окружающую данную точку, в соответствии с определением дивергенции вектора. Вполне естественно, что от функции распределения некоторой физической величины (заряда, массы, энергии и т.д.) можно всегда перейти к описанию поведения во времени самой физической величины в терминах механики сплошной среды.

Таким образом, использование той или иной функции распределения является мостиком или связующим звеном между описанием движения дискретных объектов в статистической механике и в механике непрерывных сред, которые всегда являются некоторой идеализацией реального вещества, состоящего из атомов и молекул.

Недооценка этого подхода породила в квантовой теории представление об отдельной частице как о протяженном (размытом) в пространстве объекте: например, волна де Бройля, волновой пакет или электрон в виде облака, хотя речь идет, как правило, всего лишь о функции распределения, то есть плотности вероятности местонахождения частицы в заданном объеме.

Более внимательно читайте учебник по Фундаментальной физике -
http://s6767.narod.ru/k6/k6.htm - Решение Ключевых задач физики ХХ века без Постулатов.
Классическая физика берет Реванш за свои поражения в начале ХХ века.
Отныне вся Фундаментальная Физика становится Классической Физикой. Постулаты остаются для догматиков.
Учебник Фундаментальной физики для ХХ1 и ХХII веков Первого физика-теоретика Планеты.