Шаляпин А.Л.
01.03.2013, 00:30
Механизм формирования полевой массы электронов
МЕХАНИЗМ ФОРМИРОВАНИЯ ЭЛЕКТРОМАГНИТНОЙ (ИНЕРЦИОННОЙ) МАССЫ ЭЛЕКТРОНОВ
http://osh9.narod.ru/gl/cl/ma.htm
Сама по себе идея решения этой задачи очень проста и всем хорошо известна.
Поскольку электрическое поле электрона способно производить механическую работу и обладает энергией, то это поле должно обладать и определенной инерцией по аналогии с инерцией электромагнитных волн и света.
В свою очередь, энергия электрического поля W эл определяется квадратом напряженности электрического поля Е.
Таким образом, остается всего лишь проинтегрировать величину e 0 Е 2 /2 по всему объему электрического поля, окружающего электрон.
Такую задачу пытается решать и Фейнман [2] и приводит следующий результат:
W эл = ò e 0 Е 2 /2 dV = e 2 / 8p e 0 r 0 , (1)
где r 0 - некоторый эффективный радиус электрона.
Однако здесь у подавляющего большинства физиков-теоретиков возникают непреодолимые трудности: до какого, все же, предела вблизи электрона следует брать интеграл?
Фейнман приходит к таким неутешительным выводам:
«Все идет хорошо до тех пор, пока мы не переходим к точечному электрону, … где и начинаются все наши беды, … поскольку интеграл по объему становится расходящимся, а количество энергии, окружающей точечный электрон, оказывается бесконечным».
Более сорока лет потратил Фейнман на борьбу с этими бесконечностями энергии для электронов, однако эта проблема так и не нашла удовлетворительного решения.
Подобная ситуация с электронами должна была, естественным образом, навести всех физиков на мысль, что здесь допускается элементарная логическая ошибка по поводу точечного электрона.
Более реалистичную позицию по этому поводу занимает А.Л. Шаляпин [3-6]:
«принятие электрона точечной частицей является всего лишь идеализацией и логической ошибкой, поскольку в природе вряд ли смогут существовать точечные объекты, проявляя себя вполне реально и активно взаимодействуя с окружающими объектами.
Более того, мы даже уже научились вместе с Фейнманом и со студентами учитывать неточечность электронов при нахождении запаздывающих потенциалов Льенара-Вихерта, а также напряженностей силовых полей частиц [2-6].
И во всех этих случаях ни о каких бесконечностях не могло быть и речи».
Кроме всего этого, следует обратить внимание еще на одну весьма интересную тонкость.
Из-за того, что электрон все время совершает "как бы броуновское" движение, т.е. «дрожит» под действием "нулевых" - квазиупругих колебаний физического вакуума-эфира, его электрическое поле в среднем не является центральным.
Поэтому в реальности он выглядит как светящийся (в электрическом смысле) шарик с некоторым эффективным радиусом r0.
По этой причине электрическое поле электрона нельзя интегрировать до нуля, чтобы не возникали разного рода необоснованные бесконечности в силовых полях электронов.
Как показано Фейнманом, в результате прямого вычисления запаздывающих потенциалов и напряженностей полей движущегося электрона [2], при движении электрона со скоростью v в вакууме-эфире его электрическое поле увеличивается на множитель g = (1- v 2 / c 2 ) –1/2 .
Силовые поля Е и B электрона определяются по обычным правилам дифференцирования, исходя из силовых запаздывающих потенциалов, которые были подробно рассмотрены нами в работах [3-6].
E = Ñj - ¶ A/ ¶ t , B = rot A. (2)
Опуская детальные расчеты, которые были проделаны Фейнманом в работе [2], приведем сразу наиболее важные результаты.
Для электрона, движущегося с постоянной скоростью v вдоль оси x, для скалярного запаздывающего потенциала получено
j (x, y, z, t) = g e /4p e 0 r ‘ , (3)
где g = (1 – v 2 / c 2) –1/2 , x ‘ = g (x – v t), r ‘ =( x ‘2 + y 2 + z 2) 1/2.
Совершенно аналогичным образом вычисляется и так называемый векторный потенциал движущегося электрона в тех же условиях
A = j v / c 2. (4)
Подчеркнем, что данные потенциалы были получены совершенно вне зависимости от наличия или знания уравнений Максвелла.
Более внимательно читайте учебник по Фундаментальной физике -
http://s6767.narod.ru/k6/k6.htm - Решение Ключевых задач физики ХХ века без Постулатов.
Классическая физика берет Реванш за свои поражения в начале ХХ века.
Отныне вся Фундаментальная Физика становится Классической Физикой. Постулаты остаются для догматиков.
Учебник физики ХХ1 века Первого физика-теоретика Планеты.
ОЧЕНЬ МНОГО ПУСТОЙ БОЛТОВНИ У ФАНТАЗЕРОВ И - НИКАКОГО ТОЛКУ ИЗ НИХ НЕ БУДЕТ.
ВСЕМ ФАНТАЗЕРОМ ОЧЕНЬ ТРУДНО ДАЕТСЯ МИКРОМИР - все время их тянет на глупые домашние фантазии.
НИКАКОГО КВАНТА В ПРИРОДЕ НЕ СУЩЕСТВУЕТ.
Квантование энергии и орбит в атомах и молекулах - это всего лишь Статистические закономерности для электронов.
ВСЕ ЭТО СПОКОЙНО РЕШАЕТСЯ В РАМКАХ ОБЫЧНОЙ СТАТИСТИЧЕСКОЙ ФИЗИКИ И СТАТИСТИЧЕСКОЙ ОПТИКИ.
ВСЕ ДЕЛАЕТСЯ НАИЛУЧШИМ ОБРАЗОМ.
Я по специальности физик-атомщик, и имею достаточно большой научный опыт и большие практические и теоретические знания в разных областях Фундаментальной физики.
Читайте этот Учебник по Фундаментальной физике, и будет полная ясность.
КЛАССИЧЕСКАЯ ФИЗИКА БЕРЕТ РЕВАНШ ЗА СВОИ ПОРАЖЕНИЯ В НАЧАЛЕ ХХ ВЕКА.
Отныне вся Фундаментальная Физика становится Классической Физикой.
Постулаты остаются для догматиков.
ВЕСЬ МИР ПРОЛЕТЕЛ ИЗ-ЗА ПЛОХИХ ЗНАНИЙ СТАТИСТИЧЕСКОЙ
ФИЗИКИ.
Более внимательно читайте учебник -
http://s6767.narod.ru/k6/k6.htm ; - Решение Ключевых задач физики ХХ века без Постулатов.
Классическая физика берет Реванш за свои поражения в начале ХХ века.
Отныне вся Фундаментальная Физика становится Классической Физикой. Постулаты остаются для догматиков.
Учебник физики для ХХ1 и ХХ11 веков Первого физика-теоретика Планеты.
Данная монография изложена очень простым доступным языком в рамках Классической физики. Все основные Ключевые задачи физики ХХ века впервые решены полностью в рамках Классических представлений. Таким образом, Классическая физика берет реванш за свои поражения в начале ХХ века.
В физике огромное количество фантазеров - ни один из них до сути не докопался.
Никто в мире не понял Квантовую механику (Фейнман).
Никто не понял происхождение массы и гравитации электрона (Окунь, Зельдович).
Никто не понял Природы электричества (Весь Мир).
Никто не понял Природы и механизма спина электрона (Дирак).
Бестолковщина с фотонами так и процветает (Все профессора и все академики всего Мира – как будто нет очень точной и хорошо проверенной по Фейнману Классической электродинамики, Прекрасной Физической Оптики по М. Борну и Э. Вольфу, а также таких надежных и хорошо проверенных на практике теорий как Статистической оптики и Статистической физики).
МЕХАНИЗМ ФОРМИРОВАНИЯ ЭЛЕКТРОМАГНИТНОЙ (ИНЕРЦИОННОЙ) МАССЫ ЭЛЕКТРОНОВ
http://osh9.narod.ru/gl/cl/ma.htm
Сама по себе идея решения этой задачи очень проста и всем хорошо известна.
Поскольку электрическое поле электрона способно производить механическую работу и обладает энергией, то это поле должно обладать и определенной инерцией по аналогии с инерцией электромагнитных волн и света.
В свою очередь, энергия электрического поля W эл определяется квадратом напряженности электрического поля Е.
Таким образом, остается всего лишь проинтегрировать величину e 0 Е 2 /2 по всему объему электрического поля, окружающего электрон.
Такую задачу пытается решать и Фейнман [2] и приводит следующий результат:
W эл = ò e 0 Е 2 /2 dV = e 2 / 8p e 0 r 0 , (1)
где r 0 - некоторый эффективный радиус электрона.
Однако здесь у подавляющего большинства физиков-теоретиков возникают непреодолимые трудности: до какого, все же, предела вблизи электрона следует брать интеграл?
Фейнман приходит к таким неутешительным выводам:
«Все идет хорошо до тех пор, пока мы не переходим к точечному электрону, … где и начинаются все наши беды, … поскольку интеграл по объему становится расходящимся, а количество энергии, окружающей точечный электрон, оказывается бесконечным».
Более сорока лет потратил Фейнман на борьбу с этими бесконечностями энергии для электронов, однако эта проблема так и не нашла удовлетворительного решения.
Подобная ситуация с электронами должна была, естественным образом, навести всех физиков на мысль, что здесь допускается элементарная логическая ошибка по поводу точечного электрона.
Более реалистичную позицию по этому поводу занимает А.Л. Шаляпин [3-6]:
«принятие электрона точечной частицей является всего лишь идеализацией и логической ошибкой, поскольку в природе вряд ли смогут существовать точечные объекты, проявляя себя вполне реально и активно взаимодействуя с окружающими объектами.
Более того, мы даже уже научились вместе с Фейнманом и со студентами учитывать неточечность электронов при нахождении запаздывающих потенциалов Льенара-Вихерта, а также напряженностей силовых полей частиц [2-6].
И во всех этих случаях ни о каких бесконечностях не могло быть и речи».
Кроме всего этого, следует обратить внимание еще на одну весьма интересную тонкость.
Из-за того, что электрон все время совершает "как бы броуновское" движение, т.е. «дрожит» под действием "нулевых" - квазиупругих колебаний физического вакуума-эфира, его электрическое поле в среднем не является центральным.
Поэтому в реальности он выглядит как светящийся (в электрическом смысле) шарик с некоторым эффективным радиусом r0.
По этой причине электрическое поле электрона нельзя интегрировать до нуля, чтобы не возникали разного рода необоснованные бесконечности в силовых полях электронов.
Как показано Фейнманом, в результате прямого вычисления запаздывающих потенциалов и напряженностей полей движущегося электрона [2], при движении электрона со скоростью v в вакууме-эфире его электрическое поле увеличивается на множитель g = (1- v 2 / c 2 ) –1/2 .
Силовые поля Е и B электрона определяются по обычным правилам дифференцирования, исходя из силовых запаздывающих потенциалов, которые были подробно рассмотрены нами в работах [3-6].
E = Ñj - ¶ A/ ¶ t , B = rot A. (2)
Опуская детальные расчеты, которые были проделаны Фейнманом в работе [2], приведем сразу наиболее важные результаты.
Для электрона, движущегося с постоянной скоростью v вдоль оси x, для скалярного запаздывающего потенциала получено
j (x, y, z, t) = g e /4p e 0 r ‘ , (3)
где g = (1 – v 2 / c 2) –1/2 , x ‘ = g (x – v t), r ‘ =( x ‘2 + y 2 + z 2) 1/2.
Совершенно аналогичным образом вычисляется и так называемый векторный потенциал движущегося электрона в тех же условиях
A = j v / c 2. (4)
Подчеркнем, что данные потенциалы были получены совершенно вне зависимости от наличия или знания уравнений Максвелла.
Более внимательно читайте учебник по Фундаментальной физике -
http://s6767.narod.ru/k6/k6.htm - Решение Ключевых задач физики ХХ века без Постулатов.
Классическая физика берет Реванш за свои поражения в начале ХХ века.
Отныне вся Фундаментальная Физика становится Классической Физикой. Постулаты остаются для догматиков.
Учебник физики ХХ1 века Первого физика-теоретика Планеты.
ОЧЕНЬ МНОГО ПУСТОЙ БОЛТОВНИ У ФАНТАЗЕРОВ И - НИКАКОГО ТОЛКУ ИЗ НИХ НЕ БУДЕТ.
ВСЕМ ФАНТАЗЕРОМ ОЧЕНЬ ТРУДНО ДАЕТСЯ МИКРОМИР - все время их тянет на глупые домашние фантазии.
НИКАКОГО КВАНТА В ПРИРОДЕ НЕ СУЩЕСТВУЕТ.
Квантование энергии и орбит в атомах и молекулах - это всего лишь Статистические закономерности для электронов.
ВСЕ ЭТО СПОКОЙНО РЕШАЕТСЯ В РАМКАХ ОБЫЧНОЙ СТАТИСТИЧЕСКОЙ ФИЗИКИ И СТАТИСТИЧЕСКОЙ ОПТИКИ.
ВСЕ ДЕЛАЕТСЯ НАИЛУЧШИМ ОБРАЗОМ.
Я по специальности физик-атомщик, и имею достаточно большой научный опыт и большие практические и теоретические знания в разных областях Фундаментальной физики.
Читайте этот Учебник по Фундаментальной физике, и будет полная ясность.
КЛАССИЧЕСКАЯ ФИЗИКА БЕРЕТ РЕВАНШ ЗА СВОИ ПОРАЖЕНИЯ В НАЧАЛЕ ХХ ВЕКА.
Отныне вся Фундаментальная Физика становится Классической Физикой.
Постулаты остаются для догматиков.
ВЕСЬ МИР ПРОЛЕТЕЛ ИЗ-ЗА ПЛОХИХ ЗНАНИЙ СТАТИСТИЧЕСКОЙ
ФИЗИКИ.
Более внимательно читайте учебник -
http://s6767.narod.ru/k6/k6.htm ; - Решение Ключевых задач физики ХХ века без Постулатов.
Классическая физика берет Реванш за свои поражения в начале ХХ века.
Отныне вся Фундаментальная Физика становится Классической Физикой. Постулаты остаются для догматиков.
Учебник физики для ХХ1 и ХХ11 веков Первого физика-теоретика Планеты.
Данная монография изложена очень простым доступным языком в рамках Классической физики. Все основные Ключевые задачи физики ХХ века впервые решены полностью в рамках Классических представлений. Таким образом, Классическая физика берет реванш за свои поражения в начале ХХ века.
В физике огромное количество фантазеров - ни один из них до сути не докопался.
Никто в мире не понял Квантовую механику (Фейнман).
Никто не понял происхождение массы и гравитации электрона (Окунь, Зельдович).
Никто не понял Природы электричества (Весь Мир).
Никто не понял Природы и механизма спина электрона (Дирак).
Бестолковщина с фотонами так и процветает (Все профессора и все академики всего Мира – как будто нет очень точной и хорошо проверенной по Фейнману Классической электродинамики, Прекрасной Физической Оптики по М. Борну и Э. Вольфу, а также таких надежных и хорошо проверенных на практике теорий как Статистической оптики и Статистической физики).