ВТОРОЙ ШАГ ПО УСТРАНЕНИЮ ПУТАНИЦЫ В ФИЗИКЕ

Как хорошо известно [1], закон фотоэффекта открыл опытным путем немецкий физик Ленард Филипп Эдуард Антон (1902), а не Эйнштейн, как это думает наша инженерия.
Ленард исследовал закономерности фотоэффекта, катодные лучи, структуру атома. В 1905 году Ленард получает Нобелевскую премию за работу по катодным лучам. Доказал, что при внешнем фотоэффекте вылетают освобожденные электроны (1899), и энергия вылетающих электронов не зависит от интенсивности падающего света, и прямо пропорциональна его частоте - весьма удивительное свойство света и фотоэлектронов (закон фотоэффекта Ленарда - 1902).
Ленард активно выступал против СТО.
В дальнейшем мы увидим, что удивительный закон фотоэффекта обусловлен не падающими на фотокатод фотонами, как это думают все профессора и все академики всего мира, а особыми статистическими свойствами света в рамках статистической оптики.

Фотоэффект в рамках классической Статистической физики.

При рассмотрении этого сложного явления следует учесть, что свет представляет из себя не простые синусоидальные колебания, как принято в радиотехнике, а состоит из огромного количества случайных электромагнитных парциальных волн со случайными амплитудами и фазами, излучаемыми разными атомами.
Такие случайные электромагнитные поля следует рассматривать методами Статистической оптики.

ЗАКОНОМЕРНОСТИ ФОТОЭФФЕКТА В КЛАССИЧЕСКОЙ СТАТИСТИЧЕСКОЙ ФИЗИКЕ

Рассмотрение этого сложного вопроса начнем с анализа энергетического распределения фотоэлектронов, возникающих при облучении фотокатода светом определенного спектрального состава.

Распределение фотоэлектронов по энергиям обычно исследуют методом задерживающего потенциала в сферическом вакуумном диоде с центральным фотокатодом. Вольт-амперные характеристики сферического диода, измеренные при освещении центрального катода светом различных частот, представлены на рис. П.3.2.

Полный сбор фотоэлектронов (ток насыщения Is ) достигается при некотором положительном напряжении на аноде Us. При подаче на коллектор отрицательного тормозящего напряжения -U на него попадут только те фотоэлектроны, начальная энергия которых достаточна для преодоления тормозящего поля, т.е. mv2/2 > eU. При величине задерживающего потенциала, соответствующего кинетической энергии самого быстрого фотоэлектрона, ток в цепи коллектора обращается в нуль.

Распределение фотоэлектронов по начальным кинетическим энергиям dn/dE получается дифференцированием вольт-амперных характеристик (рис. П.3.2). Форма функции распределения фотоэлектронов по энергиям напоминает максвелловское распределение частиц по скоростям, однако, имеется ограничение со стороны максимальных значений кинетической энергии фотоэлектронов Em, которая определяется частотой падающего света, (Рис. П.3.3).
Далее - в ссылке:

http://s1836.narod.ru/foto/foto.htm

1. Храмов Ю.А. Физики. Библиографический справочник. Изд. Наукова Думка, 1977.