+ Ответить в теме
Страница 4 из 7 ПерваяПервая ... 2 3 4 5 6 ... ПоследняяПоследняя
Показано с 31 по 40 из 63

Тема: Шаляпин А.Л. наводит порядок в Фундаментальной Физике

  1. По умолчанию

    АНАЛИЗ МЕХАНИЗМА МАГНИТНЫХ ВЗАИМОДЕЙСТВИЙ С ПРИВЛЕЧЕНИЕМ
    АКУСТИЧЕСКОЙ МОДЕЛИ КВАЗИУПРУГОГО ЭФИРА

    Полный текст - http://osh9.narod.ru/cl/an.htm

    А.Л. Шаляпин, В.И. Стукалов

    В магнитостатике, а также в электродинамике основные свойства магнитного поля постулируются на основе опыта. Дополнительного прояснения о природе этого поля невозможно получить, исходя из преобразований Лоренца при переходе к подвижным системам координат или из положений квантовой теории.

    В учебной литературе не всегда проводится грань между математическим формализмом и моделированием механизмов образования силовых полей. Это вносит некоторую неопределенность в понимание магнитных взаимодействий между частицами.

    В работе делается попытка выявить механизм магнитных взаимодействий через рассмотрение рассеяния акустических волн физического вакуума как квазиупругой среды. Реальность существования физического вакуума как материальной среды доказана в работе [1].

    В современной физике [2] рассматривается электромагнитный вакуум, который совершает “нулевые” колебания и обладает большой энергией. Этими колебаниями электромагнитный вакуум воздействует на электроны атомов, вынуждая их дрожать на орбитах. В результате такого воздействия орбиты электронов испытывают некоторое смещение. Смещаются также и электронные уровни энергии – так называемый сдвиг Лэмба.

    Если данные “нулевые” колебания электромагнитного вакуума рассматривать как квазиупругие колебания материальной среды, то данную задачу можно решать в рамках традиционной акустики. Электроны как малые неоднородности в сплошной среде будут вынуждены определенным образом реагировать на колебания окружающей среды.

    При этом вначале, в результате рассеяния случайных акустических волн физического вакуума электронами, формируется сферически симметричное кулоновское поле, представляющее собой поток сферических продольных электрических волн. Затем, при движении электронов в физическом вакууме, за счет запаздывания сферических рассеянных волн и деформации сферически симметричного поля, формируется магнитное поле как вторичный эффект от электрического поля.

    При ускорении электрона происходит поперечная – геометрическая модуляция продольных электрических волн с образованием поперечных электромагнитных волн. Таким образом, хорошо знакомые нам поперечные электромагнитные волны это - вторичные волны, возникшие в результате геометрической модуляции первичных продольных волн. Этим снимается проблема возникновения поперечных волн в любой среде, что явилось предметом острейших дискуссий на протяжении более ста лет.

    Магнитное поле, действующее на электрон, как гироскопическая сила, т.е. перпендикулярно скорости электрона, в данной модели вычисляется при помощи запаздывающих силовых потенциалов Льенара-Вихерта по законам классической волновой механики и акустики.

    Как показано в работе [3], рассмотренная модель формирования магнитного поля, а также и других силовых полей приводит к многочисленным интересным результатам, которые полностью согласуются с опытными данными. Данные материалы были представлены в виде доклада на международной школе – семинаре в 2004 г. [4].

    1. Marinov St. Rotating coupled mirrors experiments. Ind. J. Theor. Phys. V 31. N 2 (1983) 93-96.

    2. Соколов А.А., Тернов И.М., Жуковский В.Ч. Квантовая механика. М.: Наука, 1979. С. 338.

    3. Шаляпин А.Л., Стукалов В.И. Введение в классическую электродинамику и атомную физику. Второе издание, переработанное и дополненное. Екатеринбург, Изд-во Учебно-метод. Центр УПИ, 2006, 490 с.

    4. Шаляпин А.Л., Стукалов В.И. Анализ механизма магнитных взаимодействий с привлечением акустической модели квазиупругого физического вакуума. Новые магнитные материалы микроэлектроники – НМММ. Сб. трудов ХIХ международной школы – семинара 28 июня – 2 июля 2004 г. Физ. фак. МГУ им. Ломоносова, 920с. Доклад АС – 13, с. 76.

    За дополнительной информацией можно обратиться на сайты:

    http://osh9.narod.ru http://s6767.narod.ru

    http://s1836.narod.ru http://shal-14.narod.ru

  2. По умолчанию

    ГЛОБАЛЬНАЯ ЭНЕРГИЯ ВСЕЛЕННОЙ

    ИЗ ЧЕГО МОЖЕТ БЫТЬ СОСТАВЛЕН ФУНДАМЕНТ ФИЗИКИ БУДУЩЕГО ?

    Полный текст - http://osh9.narod.ru/gl/opt/fund.htm

    Построение истинного фундамента физики это – огромный коллективный труд многих ученых, это - учет всех достижений предшественников за многие десятилетия. Поэтому хотелось бы в максимальной степени отразить все наиболее существенное, достигнутое в области теоретической физики.

    1. Прежде всего, это – ОСНОВНЫЕ ЗАКОНЫ СОХРАНЕНИЯ КЛАССИЧЕСКОЙ МЕХАНИКИ, которые еще не нарушались ни в одном акте взаимодействия частиц и полей.

    Это – 7 ИНТЕГРАЛОВ ДВИЖЕНИЯ: ПОЛНАЯ ЭНЕРГИЯ СИСТЕМЫ, ТРИ ПРОЕКЦИИ ОБЩЕГО ИМПУЛЬСА И ТРИ ПРОЕКЦИИ ОБЩЕГО МЕХАНИЧЕСКОГО МОМЕНТА СИСТЕМЫ.

    Даже при рождении частиц, последние стараются выполнять эти основные законы сохранения, что дает основания полагать, что КЛАССИЧЕСКАЯ МЕХАНИКА должна работать во всех физических явлениях.

    2. КЛАССИЧЕСКАЯ ЭЛЕКТРОДИНАМИКА МАКСВЕЛЛА-ЛОРЕНЦА с учетом последних разработок Фейнмана, а также других авторов.

    По заявлению Фейнмана, КЛАССИЧЕСКАЯ ЭЛЕКТРОДИНАМИКА это – единственная очень хорошо проверенная (с огромной точностью и многие тысячи раз – прим. авт.) теория. КЛАССИЧЕСКОЙ ЭЛЕКТРОДИНАМИКЕ вполне можно доверять.

    Говоря образно, до 99 % всех экспериментов со светом и с другими электромагнитными волнами, а также с электронами прекрасно объясняются и рассчитываются количественно в рамках Электромагнитной теории Максвелла-Лоренца. Не понятыми остается не так много экспериментов, но это не навсегда.

    В классической электродинамике, целиком базирующейся на ЗАПАЗДЫВАЮЩИХ ПОТЕНЦИАЛАХ, т.е. на ВОЛНОВЫХ ПРОЦЕССАХ в различных средах и НЕПОДВИЖНОМ ЭФИРЕ ЛОРЕНЦА раскрывается все многообразие взаимодействий частиц и полей.

    Для ВОЛНОВЫХ ПРОЦЕССОВ В ВАКУУМЕ больше всего подходят КВАЗИУПРУГИЕ ПРОЦЕССЫ В ФИЗИЧЕСКОМ ВАКУУМЕ-ЭФИРЕ, начиная с "НУЛЕВЫХ" КОЛЕБАНИЙ ВАКУУМА [1] и рассеяния этих колебаний на электронах и позитронах - совершенно простые и очевидные вещи.

  3. По умолчанию

    ГЛОБАЛЬНАЯ ЭНЕРГИЯ ВСЕЛЕННОЙ
    “Где скрывается главная кладовая энергии в природе, и как эта энергия расходуется?”

    Полный текст - http://osh9.narod.ru/gl/pr.htm

    ПРЕДИСЛОВИЕ - ОТКУДА БЕРЕТСЯ ЭНЕРГИЯ В ПРИРОДЕ ?

    Со времени выхода второго издания монографии А.Л. Шаляпина и В.И. Стукалова “Введение в классическую электродинамику и атомную физику” [1], посвященной классической электродинамике и классической атомной физике, прошло не более пяти лет. За это время авторы имели возможность проверить доступность изложения материала для студентов, преподавателей и научных сотрудников. Были учтены многочисленные замечания и пожелания относительно методики решения тех или иных ключевых задач физики ХХ века. Ценным материалом для авторов были также письма и отзывы на эту книгу, поступившие вскоре после ее издания.

    Следует подчеркнуть тот факт, что в центре внимания упомянутой книги стоят ключевые задачи физики ХХ века, их решение на основе классических представлений. Это – механизм излучения нагретых тел, механизм дифракции микрочастиц на монокристаллах, электромагнитная устойчивость атомов, природа спина электрона и постоянной Планка, природа электрического и магнитного полей, а также электромагнитных волн, происхождение уравнения Шредингера и физический смысл всего вычислительного аппарата квантовой механики, происхождение уравнений Максвелла, закономерности фотоэффекта с классической точки зрения и многое другое.

    За последние годы появился новый интересный материал, еще более подтверждающий правоту выдвинутых положений в упомянутой книге. Мы все больше и больше убеждаемся в том, что только последовательный классический подход при рассмотрении самых разнообразных физических явлений способен объединить фундаментальную физику без каких-либо противоречий и парадоксов в единое целое.

    При составлении данного Сайта сделана попытка такого изложения материала при решении основных проблем физики XX века, которое в максимальной степени облегчило бы изучающим основы физики дальнейшее более подробное рассмотрение этих вопросов и в то же время удовлетворяло бы требованию логического единства теории и эксперимента, и, прежде всего, единой физической картины мира.

    В полной мере мы отдаем себе отчет в том, что переосмысливание – или, если угодно, ревизия – физики за последние 250 лет ее развития, начиная с понятий электричества, заряда, силовых полей, которые становятся, наконец, объектом систематического исследования уже с момента появления основополагающих работ Б. Франклина, является чрезвычайно масштабной задачей. Но, с другой стороны, все-таки стоит решиться на этот отчаянный шаг и еще раз, без спешки, не завораживаясь модными умонастроениями, не отвечая на выпады, где много эмоций и административного нажима, но очень мало физики, провести полный тщательный анализ накопленного как экспериментального, так и теоретического материала. Только в таком случае мы обретаем надежду, что мы избегнем бесплодных мучений на будущее в поисках единой физической картины мира, когда приходится почти бесцельно перебирать многочисленные варианты случайных гипотез и постулатов.

  4. По умолчанию

    ВАЖНОСТЬ СТАТИСТИЧЕСКОЙ ФИЗИКИ В МИКРОМИРЕ

    Во всех экспериментах мы всегда набираем статистику отсчетов.
    По одной точке не строится зависимость.

    ЗАДУМАЙТЕСЬ - почему весь мир корифеев не понял Квантовой механики (по великому Фейнману).
    Да потому что все прохлопали Статистическую физику. С этим было очень неважно у Планка - и он не смог дорешить свою задачу. Совсем плохо было у Н. Бора и он зашел в тупик с атомом водорода. Совершенно растерялся Шредингер и ушел из физики, хотя и получил Нобелевскую премию.
    Нафантазировал и намудрил с фотонами Эйнштейн, был близок к сумасшествию Н. Бор и т.д.
    Во внутрь электрона лезут только фантазеры - для Классической электродинамики и вообще Фундаментальной физике это ничего не дает.
    Что касается Спектрального метода Фурье, то в совершенстве им владеют лишь единицы, которые не знают Статистической физики.
    До сих пор весь мир не понимает сути Квантовой механики. Не понимает принципа работы Электричества и механизмов работы силовых полей - даже с массой электрона почти все запутались.
    А Статистика и теория вероятностей применяется и в повседневной нашей жизни.
    Поэтому всем великим физикам еще расти и расти - http://s6767.narod.ru - АТОМНАЯ ФИЗИКА

    Подробнее - Научная монография-учебник по Фундаментальной физике - http://s6767.narod.ru - Решение основных Ключевых задач физики ХХ века (впервые), вывод всех основных уравнений Классической электродинамики (впервые) и Квантовой механики (впервые). Шаляпин А.Л., Стукалов В.И. Введение в Классическую электродинамику и Атомную физику, Екатеринбург, 2006, 490 с.

  5. По умолчанию

    ПЕРВЫЙ ШАГ К ИЗБАВЛЕНИЮ ФИЗИКИ ОТ ПУТАНИЦЫ

    Полный текст - http://osh9.narod.ru/gl/um/o.htm

    23. Умов Н.А. Возможный смысл теории квант. «Вестник опытной физики и математики», 1914, с. 50. См. также Избранные сочинения, 1913.

    ОТНОШЕНИЕ УМОВА К КВАНТОВОЙ ТЕОРИИ

    Большое значение Умов придавал созданию теории квант, которая, по его мнению, знаменовала собой настоящий переворот во взглядах на энергию. Он доказывал, что в системе, состоящей из частиц и электромагнитной среды, принцип равномерного распределения энергии невозможен и недопустим. Должна существовать какая-то прерывность, говорил он, которая препятствовала бы беспредельному высасыванию энергии из материи…[1].

    В работе "Возможный смысл теории квант" [23, 24] Умов высказывает следующие оригинальные идеи: "Неудачи, постигшие попытки вывести законы излучения и удельных теплот, исходя из максвеллова распределения энергии в системе молекул или осцилляторов, привели, как известно, Планка к его гипотезе квант. Но причина этих неудач осталась невыясненной, и, пока не воспоследует соответственное объяснение, нельзя считать гипотезу квант единственной разрешающей задачу. Важность вопроса побуждает меня высказать здесь ту точку зрения, которая может, как объяснить бесплодность прежних попыток, так и указать тот путь, который приводит к принятым в настоящее время наукой законам, исходя и в тесной, не формальной, связи с максвелловым распределением энергии и минуя гипотезу излучения порциями или квантами ".

    Хорошо известно, что и сам Планк не считал данную задачу решенной совершенно правильно и до конца, поскольку несколько раз довольно неудачно пытался изменить свою комбинированную теорию и вдохнуть в нее как можно больше классики [9] (авт.).

    Фактически, Умов предлагает решить задачу Планка на излучение абсолютно черного тела полностью в рамках классической статистической физики, минуя какое-либо искусственное и туманное квантование абстрактных осцилляторов Планка. Взамен этого, Умов предлагает применить распределение Максвелла к реальным атомам и молекулам, а не к абстрактным осцилляторам или элементам энергии по Планку неизвестного происхождения (авт.).

    Изложенная концепция позволила Н.А. Умову, поль*зуясь только законом распределения Максвелла, уста*новить формулу для средней энергии резонатора План*ка без какой-либо ломки основных представлений классической физики.


    24. Умов Н.А. Метод истолкования теории Планка. Архив АН СССР, ф. 320, оп. 1, № 49, лл. 1-33.

    1. Компанеец А.И. Борьба Н.А. Умова за материализм в физике. – Изд-во АН СССР, Москва, 1954.

  6. По умолчанию

    ВТОРОЙ ШАГ ПО ИЗБАВЛЕНИЮ ФИЗИКИ ОТ ПУТАНИЦЫ

    Более подробно - http://s1836.narod.ru/foto/foto.htm

    Как хорошо известно [1], закон фотоэффекта открыл опытным путем немецкий физик Ленард Филипп Эдуард Антон (1902), а не Эйнштейн, как это думает наша инженерия.
    Ленард исследовал закономерности фотоэффекта, катодные лучи, структуру атома. В 1905 году Ленард получает Нобелевскую премию за работу по катодным лучам. Доказал, что при внешнем фотоэффекте вылетают освобожденные электроны (1899), и энергия вылетающих электронов не зависит от интенсивности падающего света, и прямо пропорциональна его частоте - весьма удивительное свойство света и фотоэлектронов (закон фотоэффекта Ленарда - 1902).
    Ленард активно выступал против СТО.
    В дальнейшем мы увидим, что удивительный закон фотоэффекта обусловлен не падающими на фотокатод фотонами, как это думают все профессора и все академики всего мира, а особыми статистическими свойствами света в рамках статистической оптики.

    Фотоэффект в рамках классической Статистической физики.

    При рассмотрении этого сложного явления следует учесть, что свет представляет из себя не простые синусоидальные колебания, как принято в радиотехнике, а состоит из огромного количества случайных электромагнитных парциальных волн со случайными амплитудами и фазами, излучаемыми разными атомами.
    Такие случайные электромагнитные поля следует рассматривать методами Статистической оптики.

    ЗАКОНОМЕРНОСТИ ФОТОЭФФЕКТА В КЛАССИЧЕСКОЙ СТАТИСТИЧЕСКОЙ ФИЗИКЕ

    Рассмотрение этого сложного вопроса начнем с анализа энергетического распределения фотоэлектронов, возникающих при облучении фотокатода светом определенного спектрального состава.

    Распределение фотоэлектронов по энергиям обычно исследуют методом задерживающего потенциала в сферическом вакуумном диоде с центральным фотокатодом. Вольт-амперные характеристики сферического диода, измеренные при освещении центрального катода светом различных частот, представлены на рис. П.3.2.

    Полный сбор фотоэлектронов (ток насыщения Is ) достигается при некотором положительном напряжении на аноде Us. При подаче на коллектор отрицательного тормозящего напряжения -U на него попадут только те фотоэлектроны, начальная энергия которых достаточна для преодоления тормозящего поля, т.е. mv2/2 > eU. При величине задерживающего потенциала, соответствующего кинетической энергии самого быстрого фотоэлектрона, ток в цепи коллектора обращается в нуль.

    Распределение фотоэлектронов по начальным кинетическим энергиям dn/dE получается дифференцированием вольт-амперных характеристик (рис. П.3.2). Форма функции распределения фотоэлектронов по энергиям напоминает максвелловское распределение частиц по скоростям, однако, имеется ограничение со стороны максимальных значений кинетической энергии фотоэлектронов Em, которая определяется частотой падающего света, (Рис. П.3.3).
    Далее - в ссылке:

    http://s1836.narod.ru/foto/foto.htm

    1. Храмов Ю.А. Физики. Библиографический справочник. Изд. Наукова Думка, 1977.

    Отметим характерную особенность данных кривых. Хотя облучение фотокатода производится почти монохроматическим светом, распределение фотоэлектронов по энергиям имеет непрерывный характер, как и в случае термоэмиссии. Таким образом, мы имеем дело со статистическим процессом взаимодействия электромагнитных волн с электронной плазмой фотокатода.

    Из статистической физики известно, что при достаточно большом числе участвующих в процессе частиц форма функции распределения не зависит от количества частиц, а определяется другими факторами.

    Функция распределения фотоэлектронов по энергиям есть функция отклика электронной плазмы фотокатода на статистическое поле падающих световых волн, которое формируется благодаря огромному числу излучающих атомов. Так как фазы и направления поляризации излучения каждого атома являются случайными, то в результате сложения огромного числа независимых волн образуется некоторое распределение статистического волнового поля по амплитудам и фазам векторов Е и Н.

    Как и для многих других распределений, функция распределения по амплитудам для статистического электромагнитного поля не должна зависеть от количества участвующих в процессе излучения атомов. Подобные свойства световых полей рассматриваются в статистической оптике и статистической радиофизике [1].

  7. По умолчанию

    ТРЕТИЙ ШАГ К ИЗБАВЛЕНИЮ ФИЗИКИ ОТ ПУТАНИЦЫ

    НЕСОСТОЯВШАЯСЯ СТО ЭЙНШТЕЙНА

    Полный текст - http://osh9.narod.ru/cl/to.htm

    На достоверном историческом материале проследим за теми событиями, которые предшествовали появлению на сцену «изобретателя» СТО Эйнштейна, который повторяет уже все открытое предшественниками в физике, но со своих собственных абстрактных математических позиций.

    Уиттекер Э. История теорий эфира и электричества. Современные теории 1900 – 1926. Перевод с английского Н.А. Зубченко под ред. Б.П. Кондратьева. Москва – Ижевск, 2004. 464 с.

    ГЛАВА 2

    Теория относительности Пуанкаре и Лоренца, с. 59.

    В конце девятнадцатого века одной из наиболее сложных нерешенных проблем натурфилософии была проблема определения относительного движения Земли и эфира. Давайте попробуем представить ее такой, какой она являлась физикам того времени.

    Еще до конца девятнадцатого века неудачное завершение множества многообещающих попыток измерения скорости Земли относительно эфира позволило Пуанкаре с его острым и нестандартным умом сделать новое предположение.

    В 1899 году в своих лекциях в Сорбонне [2] после описания проведенных к тому времени экспериментов, не выявивших никаких эффектов, которые включали бы коэффициент аберрации (то есть отношение скорости Земли к скорости света) в первой или во второй степени, он сказал [3]: «Я считаю, что, скорее всего, оптические явления зависят только от относительных движений материальных тел, источников света и используемого оптического устройства, и это верно не только в отношении величин порядка квадрата аберрации, но в принципе. Иными словами, уже в 1899 году Пуанкаре считал, что абсолютное движение невозможно обнаружить в принципе, независимо от того, какие для этого используются методы: динамические, оптические или электрические.

    2. Phil Mag IV (1902). C. 678.

    3. Phil Mag VII (1904). C. 317.

    4. Издано E. Neculcea, напечатано в 1901 году под названием Electricit’e et Optique. Париж, Carre et Naucl.

    5. Loc. cit., c. 536.

    В следующем году он высказал ту же мысль на Международном физическом конгрессе в Париже [1]. «Наш эфир, - сказал он, существует ли он на самом деле? Я не думаю, что более точные наблюдения вообще способны выявить что-либо, кроме относительных перемещений». Упомянув, что на текущий момент отрицательные результаты, полученные для членов первого и второго порядка по (v/c), имеют разные объяснения, он продолжил: «Необходимо найти одно и то же объяснение отрицательным результатам, полученным в отношении членов обоих порядков, причем есть все причины считать, что найденное объяснение подойдет и для членов более высоких порядков, а взаимоуничтожение членов будет строгим и абсолютным». Таким образом, в физике появился НОВЫЙ ПРИНЦИП, схожий со вторым законом термодинамики, т.к. он утверждал невозможность какого-либо действия, в данном случае – невозможность определения скорости Земли относительно эфира [2].

    В лекции, прочитанной на Конгрессе искусств и наук в американском городе Сент-Луисе 24 сентября 1904 года, Пуанкаре

    Назвал обобщенную форму этого принципа принципом относительности [3]. «Согласно принципу относительности, - сказал он, - законы, которым подчиняются физические явления, должны быть одинаковыми как для «неподвижного» наблюдателя, так и для наблюдателя, относительно которого происходит равномерное поступательное движение. Вследствие этого у нас нет и не может быть средств, которые позволили бы определить, пребываем ли мы в таком движении». Изучив в свете этого принципа записи проведенных наблюдений, он заявил: «Из всех этих результатов должен появиться совершенно новый вид динамики, главной особенностью которой станет следующее правило: ни одна скорость не может превысить скорости света».

  8. По умолчанию

    ЧЕТВЕРТЫЙ ШАГ К ИЗБАВЛЕНИЮ ФИЗИКИ ОТ ПУТАНИЦЫ

    В ПРИРОДЕ НЕТ НИКАКИХ ВОЛНОВЫХ СВОЙСТВ МИКРОЧАСТИЦ.
    ПОДОБНЫЕ ЗАДАЧИ СПОКОЙНО РЕШАЮТСЯ В СТАТИСТИЧЕСКОЙ ФИЗИКЕ С ИСПОЛЬЗОВАНИЕМ ФУНКЦИЙ РАСПРЕДЕЛЕНИЯ (или плотности вероятности) ЭЛЕКТРОНОВ ПО КООРДИНАТАМ И ПО ИМПУЛЬСАМ.
    С подобными функциями в Статистической физике очень плохо разобрались все корифеи физики, а также все профессора и все академики ВСЕГО МИРА. В результате этого они пошли по пути откровенного фантазирования, пытаясь на фантазиях строить НОВУЮ ФИЗИКУ, которая не соответствует природным процессам.
    НА ПРИМЕРЕ РАССЕЯНИЯ («ДИФРАКЦИИ») ЭЛЕКТРОНОВ НА МОНОКРИСТАЛЛАХ В ОЧЕНЬ ЯРКОЙ ФОРМЕ ПОКАЗАН ПРИМЕР РЕШЕНИЯ ТАКОЙ ЗАДАЧИ. ЗДЕСЬ ЖЕ ВСКРЫВАЮТСЯ ВСЕ ОШИБКИ, ДОПУСКАЕМЫЕ ВСЕМИ ФИЗИКАМИ.

    ПОЛНЫЙ ТЕКСТ - http://s6767.narod.ru - АТОМНАЯ ФИЗИКА - ДИФРАКЦИЯ ЭЛЕКТРОНОВ

    А.Л. Шаляпин, В.И. Стукалов
    ЭЛЕКТРОМАГНИТНЫЙ МЕХАНИЗМ ДИФРАКЦИИ МИКРОЧАСТИЦ НА МОНОКРИСТАЛЛАХ
    1. ВВОДНЫЕ ЗАМЕЧАНИЯ
    В рамках обычных классических представлений на первый взгляд не укладывались закономерности, которые проявлялись при отражении любых микрочастиц от граней совершенных монокристаллов. Частицы проявляли себя так же, как и рентгеновские лучи с длиной волны, равной длине волны де Бройля h / mv, для которых выполнялись условия Вульфа-Брэгга при отражении от кристаллических плоскостей. Любопытно было то, что существование гипотетических волн микрочастиц (волн материи) было предсказано де Бройлем за два года до экспериментов по дифракции микрочастиц на монокристаллах.
    При использовании каких бы то ни было моделей дифракции микрочастиц в результате их взаимодействия с внешними макрообъектами следует учитывать, прежде всего, те экспериментальные данные, которые можно отнести к разряду твердо установленных фактов. К настоящему времени с высокой степенью точности и воспроизводимости результатов констатируется следующее:
    1. Явления дифракции характерны для микрочастиц любой природы - электронов, протонов, нейтронов, а также для атомов и молекул, за что их и прозвали своеобразными волнами материи. Наличие у частиц заряда или его отсутствие может сказаться на коэффициенте отражения, но не на характере дифракционной картины. Здесь, пожалуй, можно опустить из рассмотрения, например, эффекты рассеяния p-мезонов на протонах, которые также предполагается интерпретировать с точки зрения дифракционных механизмов.
    2. Дифракция микрочастиц имеет в общем случае не поверхностный, а скорее объемный характер, обнаруживаясь при прохождении через монокристаллы, облете препятствий. В случае же отражения от поверхности монокристаллов картина дифракции в большей степени определяется физической природой монокристалла и в меньшей степени - состоянием его поверхности, в частности, процессами адсорбции или концентрацией дефектов на поверхности. Последние можно рассматривать как малые возмущения к основной картине дифракции на монокристалле, обусловленной его структурой.
    3. Доминирующим фактором дифракции является величина относительной скорости между микрочастицей и макрообъектом. Если же говорить точнее, то для системы координат, связанной с монокристаллом, главным является импульс микрочастицы. Но эксперимент можно поставить так, что монокристалл будет двигаться с некоторой скоростью навстречу частицам. В том случае, когда будут двигаться навстречу друг другу и микрочастица, и монокристалл, не совсем ясно, что понимать под длиной волны де Бройля в разных системах отсчета, не говоря уже о механизме возникновения такой волны
    4. В данных экспериментах отмечается поразительная корреляция положения дифракционных максимумов от кристаллографических характеристик макрообъектов-мишеней, от взаимной ориентации векторов импульса микрочастицы и кристаллической решетки.

  9. По умолчанию

    ПЯТЫЙ ШАГ К ИЗБАВЛЕНИЮ ФИЗИКИ ОТ ПУТАНИЦЫ

    КЛАССИЧЕСКИЙ ПЛАНЕТАРНЫЙ АТОМ ПРЕКРАСНО РЕШАЕТСЯ В СТАТИСТИЧЕСКОЙ ФИЗИКЕ С ИСПОЛЬЗОВАНИЕМ ФУНКЦИЙ РАСПРЕДЕЛЕНИЯ (или плотности вероятности) ЭЛЕКТРОНОВ ПО КООРДИНАТАМ И ПО ИМПУЛЬСАМ.

    Полный текст - http://osh9.narod.ru/gl/at/at3.htm

    С подобными функциями в Статистической физике очень плохо разобрались все корифеи физики, а также все профессора и все академики ВСЕГО МИРА. В результате этого они пошли по пути откровенного фантазирования, пытаясь на фантазиях строить НОВУЮ ФИЗИКУ, которая не соответствует природным процессам.

    КЛАССИЧЕСКИЙ ПЛАНЕТАРНЫЙ АТОМ В СТАТИСТИЧЕСКОЙ ФИЗИКЕ
    ЭЛЕКТРОМАГНИТНАЯ УСТОЙЧИВОСТЬ АТОМОВ

    Наиболее наглядно эффективность последовательного применения законов классической физики в области микромира можно продемонстрировать на примере объяснения строения атома.

    Более глубокий анализ данного явления показал, что обычной теории Максвелла - Лоренца с учетом законов сохранения энергии и механического момента вполне достаточно, чтобы установить факт невозможности излучения поперечных электромагнитных волн для электрона, находящегося на круговой или эллиптической орбите вокруг ядра, а также сформулировать те условия, при которых это излучение вполне возможно.

    СЛУЧАЙНЫЙ ХАРАКТЕР ДВИЖЕНИЯ ЭЛЕКТРОНОВ В АТОМАХ

    Как известно, в начальной теории Бора рассматривался отдельный изолированный атом водорода. Однако полностью изолировать атом от внешних воздействий практически не удается. В реальных условиях электроны атомов всегда подвержены действию случайных внешних факторов подобно тому, как это имеет место в случае движения атомов или молекул в газах. Если в газах это проявляется главным образом в броуновском движении или диффузии частиц, то в случае орбитального движения электронов в атомах обстановка становится более сложной. Для электронов, движущихся по атомным орбитам, последствия такого взаимодействия можно разбить на две группы.
    В первую группу следует отнести такие взаимодействия с внешними факторами, которые приводят к изменению момента количества движения электрона за счет обмена импульсом или механическим моментом с другими частицами. Изменение механического момента электрона, как правило, влечет за собой изменение полной энергии атома и, как следствие, приводит к излучению или поглощению электромагнитной энергии атомом.
    Сюда можно отнести столкновения второго рода атомов и молекул с изменением внутренней энергии частиц, облучение атомов быстрыми частицами и электромагнитными волнами с резонансными частотами поглощения, которые могут привести даже к отрыву электронов от атомов, возможное взаимодействие орбитальных электронов с нуклонами ядра, играющих роль перевертышей (или катализаторов) для реализации обмена энергией между орбитальными электронами и электромагнитными волнами и т.д.
    Траектории в атомах вместо круговых или эллиптических за счет подобного взаимодействия становятся деформированными и незамкнутыми. Про такую траекторию обычно говорят, что она размыта или размазана в пространстве.




    http://osh9.narod.ru/at/at3/at3.files/atom3.7.gif

  10. По умолчанию

    ОБРАЩЕНИЕ КО ВСЕМ ФАНТАЗЕРАМ ОТ ФИЗИКИ

    Полный текст - http://s6767.narod.ru/razn/vsem.htm

    УВАЖАЕМЫЕ ГОСПОДА!

    Прежде чем выстраивать все новые и новые фантазии в физике, от которых уже ломятся все средства массовой информации и которые все больше пополняют огромные горы никчемного мусора, очень советуем освоить для начала основы, азы Фундаментальной физики - Классической электродинамики и Классической статистической физики, в рамках которых могут быть прекрасно решены все основные задачи современной физики.

    ВУЗовская инженерная физика приспособлена лишь для ограниченной практической работы и не раскрывает все секреты атомного мира. Она совсем не годится для успешного штурма микромира в силу своей ограниченности.

    В качестве положительного примера предлагается прекрасная научная монография - учебник [1] http://s6767.narod.ru - Классическая электродинамика и Атомная физика.

    Фантазеры всевозможных мастей, не знающих ни Классической электродинамики, ни Статистической физики, пышным, махровым цветом расцвели на трудностях физики, на трудностях экспериментальных методик. При этом каждый безграмотный фантазер пытается выдать себя за истца в последней инстанции, нагораживая все новые и новые абстракции, как правило, очень далекие от реальности.

    А малограмотный народ находится в полном замешательстве, не зная кому и верить – новоявленным истцам или авторитетам прошлого. Но пока подавляющее большинство чиновников молятся на Эйнштейна, настоящие, наиболее грамотные физики продолжают упорно работать, добывая в упорном труде, в нелегких экспериментах крупицы истины. Хорошо известно, что истину никогда еще не удавалось навсегда запереть на замок или отменить очередным безграмотным Указом или Постановлением.

    Очень часто бывает, что такой фантазер высосет из пальца очередную фантазию дома, лежа на диване и глядя в потолок, а потом шумит на весь мир о своих «достижениях». И остановить его невозможно – стоит до последнего на своем, поскольку, откажись он от своей бредовой идеи, так там ничего и не останется – лишь «нулевые» познания в физике.

    ЧТО ОБЪЕДИНЯЕТ ВСЕХ ФАНТАЗЕРОВ И ОДНОВРЕМЕННО РОДНИТ ИХ С КВАЗИСОВРЕМЕННОЙ АБСТРАКТНОЙ ФИЗИКОЙ

    Фантазеры, как правило, начинают свои выступления с того, что обещают очень много «чудес» вплоть до переворота в физике и энергетике, океан бесплатной энергии и даже «золотые горы».

    Однако проходит некоторое время, а результатов все нет и нет. И, разумеется, фантазеры своевременно тихо уходят в тень. Ведь популярности среди большого количества доверчивых людей они уже добились.

+ Ответить в теме

Ваши права

  • Вы не можете создавать новые темы
  • Вы не можете отвечать в темах
  • Вы не можете прикреплять вложения
  • Вы не можете редактировать свои сообщения