+ Ответить в теме
Страница 6 из 7 ПерваяПервая ... 4 5 6 7 ПоследняяПоследняя
Показано с 51 по 60 из 63

Тема: Шаляпин А.Л. наводит порядок в Фундаментальной Физике

  1. По умолчанию

    ПРОДОЛЬНЫЕ ЭЛЕКТРИЧЕСКИЕ ВОЛНЫ
    Полный текст - http://s1836.land.ru/cl/prod.htm

    Беседа о продольных электрических волнах у подавляющего большинства физиков и радистов вызывает очень большое недоумение, поскольку этот вопрос в учебной литературе, практически, не рассмотрен.

    Эти волны выпали из рассмотрения по самой простой причине: с их помощью невозможно передавать сигналы на большое расстояние из-за их быстрого затухания с расстоянием.
    Однако в ближней зоне излучателя продольные электрические волны всегда присутствуют как обычные волны, как волновые процессы в среде.

    Все это достаточно подробно рассмотрено в классической электродинамике. Лишь поперечная модуляция продольных волн может обеспечить дальнюю связь.

    А ведь именно эти продольные волны и составляют основу классической электродинамики, поскольку именно с этих волн начинается формирование основных силовых полей, как кулоновского, так и магнитного поля.



    РЕЗЮМЕ

    В теории Максвелла-Лоренца электрический вектор Е есть всегда волна в любом месте и в любом виде, поскольку электрическое поле всегда запаздывает.

    1. Именно с помощью продольных кулоновских волн каждый электрон поставляет энергию в каждую точку поля, где всегда может совершаться механическая работа над частицами. Закон сохранения полной энергии еще нигде не нарушался.

    2. Кулоновское поле является запаздывающим полем, т.е. распространяется не мгновенно, а постепенно со скоростью света. А это и есть по определению волновой процесс.

    3. То, что это продольные волны, я думаю, не нужно и убеждать. Достаточно нанести вектора скорости распространения волн и силы.

    4. У нас уже знают, что продольные волны могут образовывать резонансы в замкнутых резонаторах СВЧ.

    5. Продольные волны свободно проходят через плоский конденсатор и могут образовать резонансные моды между обкладками конденсатора.

    6. В обычном проводе электрический сигнал передается именно этими продольными волнами от одного электрона к другому. В учебниках этот вопрос почти не освещен.

    7. Продольные электромагнитные волны широко
    используются в науке и технике. В учебниках по физике вы не найдете о них ничего - как будто их и нет в природе.

    Многие не верят в существование продольных электромагнитных волн, однако имеется большое количество статей про эти волны. Привожу лишь небольшую часть.

    1. Богданов В.П., Протопопов А.А., Яшин А.А. Продольные электромагнитные волны: биологические, физические и энергетические аспекты // Вестник новых мед. технологий. - 1999. - Т.VI, N 3-4. - С.41-44. - Библиогр.: 16 назв.

    2. Исследование методом соматической рекомбинации дрозофил, подвергшихся воздействию продольных электромагнитных волн / В.П.Богданов, В.В.Воронов, Р.А.Сидоров, А.А.Яшин // Вестник новых мед. технологий. - 1995. - Т.2, N 3-4. - С.6-9.

    3. Концептуальные основы электроники на продольных электромагнитных волнах / Нефедов Е.И., Протопопов А.А., Семенцов А.Н., Яшин А.А. // Междунар. конф. "100-летие начала использования электромагнитных волн для передачи сообщений и зарождения радиотехники": Тез. докл. Ч.2. - М., 1995. - С.293-295. - Библиогр.: 8 назв.

    4. Нефедов Е.И., Протопопов А.А., Яшин А.А. Параметрические характеристики канала информации на продольных электромагнитных волнах // Электродинамика и техника СВЧ и КВЧ. - 1995. - Т.3, N 4. - С.79-88. - Библиогр.: 20 назв.

    5. Опытные исследования энергоинформационных взаимодействий излучений генератора продольных электромагнитных волн с водой / Абдулкеримов С.А., Богданов В.П., Годин С.М. и др. // Электродинамика и техника СВЧ и КВЧ. - 2000. - Т.8, N 3-4(2. - С.124-126. - Библиогр.: 3 назв.

  2. По умолчанию

    НАБЛЮДЕНИЕ ПРОДОЛЬНЫХ ЭЛЕКТРИЧЕСКИХ ВОЛН

    Полный текст - http://s1836.land.ru/cl/nab/nab.htm

    EUROPHYSICS LETTERS 15 August 2002
    Europhys. Lett., 59 (4), pp. 514-520 (2002) Наблюдение скалярных продольных электромагнитных волн
    C. MONSTEIN1 и J. P. WESLEY2
    1 - ETHZ, Институт Астрономии - Scheuchzerstrasse 7, CH-8092 Z¨urich, Швейцарии
    2 -Weiherdammstrasse 24, D-78176 Блумберг, Германия
    (получено 18 февраля 2002; принято в окончательной форме 14 мая 2002)
    PACS. 41.20.-q - Прикладной классический электромагнетизм.
    PACS. 41.20. Jb - Электромагнитное распространение волн; Резюме. - Теоретически должен существовать скалярный силовой потенциал Φ волны с продольным электрическим полем E в направлении распространения этой волны. Центрально питаемая шаровая антенна, 6 см диаметром, производя пульсирующий сферический заряд передатчика на частоте 433.59 МГЦ, произвела такую волну, которая была обнаружена идентичной приемной шаровой антенной. Продольность волны E демонстрировалась путем помещения кубического набора 9-ти проводников полудлины волны, которые поглощали волну, когда проводники были параллельны (но не когда перпендикулярны) к направлению распространения волн. Сигнал от шаровой антенны передатчика, помещенной в 4.0 м. над землей и приемника – в 4.4 м. над землей, был измерен как функция расстояния, приводя к удовлетворительному согласию с теорией, включая 2 предсказанных теорией минимума интерференции, вызванные источником изображения, наведенным в Земле. Только реальные волны могут привести к такой интерференции и могут быть отражены от поверхности Земли, и изменяться как обратный квадрат расстояния. Теория. - Из закона Кулона, скалярный силовой потенциал Φ есть решение уравнения Лапласа. Вводя запаздывание по времени, Φ становится решением неоднородного волнового уравнения [1-3],
    Ф -  2Ф/ t 2c 2 = −4  , (1)

  3. По умолчанию

    АВЕЩАНИЯ ВЕЛИКИХ ТЕОРЕТИКОВ

    А. Эйнштейн. Физика и реальность. М.: Наука, 1965. С. 54-57, 163, 273, 343.

    “Попытки найти единые законы материи, породить теорию поля и квантовую теорию не прекращались. Речь идет о том, чтобы найти структуру пространства, удовлетворяющую условиям, выдвигаемым обеими теориями. Результатом оказалось кладбище погребенных надежд”.

    “ … я, все-таки, думаю, что в наших поисках единого фундамента физики эта теория (квантовая) может привести нас к ошибке…, … я не думаю, что эта теория (квантовая) является подходящей исходной точкой для будущего развития”.

    “Физики считают меня старым глупцом, но я убежден, что в будущем развитие физики пойдет в другом направлении, чем до сих пор”.

    А. Пайс. Научная деятельность А. Эйнштейна. М.: Наука, 1989. С.448.

    (с.448) "В начале 50-х годов Эйнштейн однажды сказал мне (А. Пайсу), что не уверен в возможности добиться прогресса в рамках дифференциальной геометрии... В. Баргман рассказал мне, что примерно то же самое Эйнштейн говорил ему в конце 30-х годов. Такого же рода высказывание содержится и в письме Инфельду: "Я все больше и больше склоняюсь к мысли, что нельзя продвинуться дальше, используя теории, строящиеся на континууме". В 1954 г. (за год до смерти) он писал своему другу Бессо: "Я считаю вполне вероятным, что физика может и не основываться на концепции поля, т.е. на непрерывных структурах. Тогда ничего не останется от моего воздушного замка, включая теорию тяготения, как, впрочем, и от всей современной физики".

    Поль Дирак. Пути физики. М.: Энергоатомиздат, 1983.

    “Современная квантовая механика - величайшее достижение, но вряд ли она будет существовать вечно..., возврат к причинности может стать возможным лишь ценой отказа от какой-либо другой фундаментальной идеи, которую мы сейчас безоговорочно принимаем... Современная квантовая теория прекрасно "работает" до тех пор, пока мы не требуем от нее слишком многого". Релятивистская квантовая теория как фундамент современной науки никуда не годится". "Человек не чувствует себя удовлетворенным, если теория дает только вероятности".

    Р. Фейнман, Р. Лейтон, М. Сэндс. Фейнмановские лекции по физике.

    Электродинамика. М.: Мир, 1977. Вып. 6. С. 305.

    "И все же, если еще задержаться на минуту и посмотреть на фасад этого удивительного сооружения, имевшего столь громадный успех в объяснении столь многих явлений, то можно обнаружить, что оно вот-вот завалится и рассыплется на куски. Если вы поглубже вгрызетесь почти в любую из наших физических теорий, то обнаружите, что, в конце – концов, попадаете в какую-нибудь неприятную историю".

    Р. Фейнман (в кн. A. Zeilinger. Experiment and the foundations of quantum physics/ Reviews of Modern Physics. Special issue of the American Physical Society. March 1999. V.71. P.288):

    “Я имею основание со всей определенностью заявить, что сегодня никто не понимает квантовую механику”. (Фраза произнесена в связи с экспериментами по интерференции нейтронов, а также парадоксами Эйнштейна-Подольского-Розена и неравенствами Белла).

    Более подробно:

    Шаляпин А.Л., Стукалов В.И. Введение в классическую электродинамику и атомную физику. Второе издание, переработанное и дополненное. Екатеринбург, Изд-во: Учебно-метод. Центр УПИ, 2006, 490 с.

    За дополнительной информацией можно обратиться на сайты:

    http://s6767.narod.ru ; http://osh9.narod.ru

    http://shal-14.narod.ru

  4. По умолчанию

    КАК ЖЕ ЛЕГКО ОБМАНУТЬСЯ В ЭТОЙ СТО ПРОСТЫМ ЛЮДЯМ

    http://osh9.narod.ru/cl/elem.htm

    Представьте, что у Вас происходит распространение сферической волны согласно уравнению R = ct, где R – радиус, проведенный из начала координат. Сферическая волна здесь выбрана по той причине, что именно такие волны, в основном, и господствуют в Классической электродинамике.
    А потом Вам говорят, что мы можем перейти и в подвижную систему координат, которая перемещается по оси Х со скоростью v и уже оттуда понаблюдать за этой самой волной.
    Но для этого нужно заменить координату х и время t в уравнении волны на штрихованные переменные согласно соотношениям Лоренца
    x' = γ (x – vt) и t’ = γ (t – vx/c2). В этом случае, согласно принципу относительности, Вы даже и не заметите, что движетесь со скоростью v. И исходная сферическая волна по-прежнему для Вас останется такой же сферической волной, распространяющейся со скоростью с в соответствии с уравнением в штрихованной (подвижной) системе координат:
    R’ = ct’.
    Вполне естественно, что Вы во все это полностью верите. Однако Вас опять обманули. Оказывается, что, обещая Вам перейти в подвижную систему координат, на самом деле никто кроме Вас, так легко обманутых, переходить туда и не собирается. И обман раскрывается достаточно легко. Все дело в том, что штрихованное уравнение сферической волны R’ = ct’, якобы в подвижной системе координат, есть с высочайшей степенью точности то же самое уравнение R = ct для исходной сферической волны. И никуда эту сферическую волну мы с Вами не перетаскивали.
    Все это необычайно легко проверить, если подставить штрихованные переменные x' = γ (x – vt) и t’ = γ (t – vx/c2 в уравнение для штрихованной сферической волны R’ = ct’. Предоставляем возможность читателям в этом полностью убедиться.
    Отсюда напрашивается вполне естественный логический вывод. Если Вы полагаетесь только на математические вычисления, то очень легко оказаться во власти математических трюков и в стороне от настоящей физики.
    В противовес этим математическим трюкам в Классической электродинамике каждый шаг является тщательно продуманным и логически обоснованным с соблюдением принципа причинности и всех законов сохранения в фундаментальной физике.

  5. По умолчанию

    ПРОСТЕЙШИЙ ВЫВОД ПРЕОБРАЗОВАНИЙ ЛОРЕНЦА БЕЗ СТО
    (для школьников). ПОЛНЫЙ ВОЗВРАТ К СТАТИКЕ.

    http://s6767.narod.ru/razn/prost.htm

    На конкретном алгебраическом примере покажем, как иногда в физике из «мухи» делают «слона» и как нам обратно «слона» превратить в «муху».
    Попробуем из двух простейших алгебраических уравнений xн = vt (уравнение движения наблюдателя по оси ОХ) и xв = ct (уравнение движения световой волны вдоль оси ОХ) построить преобразования Лоренца.
    Мы полагаем, что такая задача под силу даже слабому школьнику, едва знакомому с элементами простейшей алгебры.
    Вычтем из правой и левой части уравнения для волны величину vt, как бы смещая его и по оси Х и по оси времени.
    xв - vt = ct – vt. (1)
    Разумеется, что для уравнения волны такая операция никакого вреда не принесет – это вновь будет уравнение для той же волны. Теперь совершим маленький детский трюк и в уравнение для волны (1) вставим опять то же самое уравнение волны t = xв /c в правую часть (1) для vt.
    Тогда это же уравнение волны (1) будет выглядеть уже интереснее
    xв - vt = ct – ( v/c) xв . (1)
    Для того чтобы уравнение (1) выглядело еще красивее, произведем замену
    переменной β = v/c и вынесем в правой части скорость с за скобку
    xв - vt = c (t – β xв /c ). (1)
    Далее обе части уравнения для волны (1) умножим на масштабный множитель
    γ = ( 1 – β 2) –1/2, который обычно появляется при прямом вычислении запаздывающих силовых потенциалов и силовых полей для движущихся электронов в Классической электродинамике. От этого уравнение (1) опять нисколько не пострадает
    γ (xв – vt ) = c γ (t – β xв /c ). (1)
    Это уравнение (1), которое мы так искусно «нарядили», можно записать снова, как было раньше в статике для той же самой волны
    xв’ = c t’ , (1)
    где xв’ = γ (xв – vt ) и t’ = γ (t – β xв /c ).
    А это уже и есть самые настоящие преобразования Лоренца, которые могут свести динамическую задачу с движущимися телами обратно к статической задаче, т.е. к случаю, когда ничего не движется.
    Таким образом, здесь практически везде речь шла всего лишь об одном уравнении (1) для движения фронта волны xв = ct , а кое-кто мог даже себе вообразить, что мы перешли в подвижную систему координат, связанную с наблюдателем xн = vt.
    Вот, таковы уж эти «коварные» волновые уравнения и не менее «коварные» преобразования Лоренца, что можно вообразить себе невесть что (и даже СТО).
    В заключение заметим, что условно введенный множитель γ здесь, как бы даже не играет никакой роли, а служит лишь для украшения уравнения (1). Но в дальнейшем будет показано, что он сыграет даже очень положительную роль для сферической волны R = ct, возвращая ее также к полной статике.

  6. По умолчанию

    ФИЗИЧЕСКИЙ СМЫСЛ ПРЕОБРАЗОВАНИЙ ЛОРЕНЦА
    И ЧЕТЫРЕХВЕКТОРЫ
    Полный текст - http://s1836.land.ru/cl/lor/lor.htm

    О преобразованиях Лоренца в учебной и научной литературе написано очень много и в разных публикациях им придают неоднозначный смысл. В подходах Лоренца и Эйнштейна они также имеют совершенно разное содержание.
    Естественно задать вопрос: так в чем же секрет и магическая сила этих преобразований координат и времени, которые, если можно так выразиться, перевернули наши представления об окружающем нас мире в ХХ веке?
    На простейшем примере покажем, что понять физический смысл преобразований Лоренца не представляет большой сложности.
    Пусть в направлении оси ОХ (рис.16.1) распространяется плоская волна В со скоростью с.


    Рис.16.1. Движение наблюдателя Н и распространение плоской волны В вдоль оси OX.

    Уравнение движения фронта этой волны в неподвижной системе координат, связанной со средой, имеет вид:

    xв = c t. (16.1)

    Наблюдатель Н движется в том же направлении со скоростью v. Уравнение движения наблюдателя такое

    xн = v t. (16.2)

    Уравнение (16.1) можно записать и в такой форме, сместив его по оси OX с целью перехода в подвижную систему координат,

    xв - v t = c t - v t = c(t - b xв/c), (16.3)

    где b = v/c. Чтобы уравнение (16.1) осталось в силе, мы просто вычли из правой и левой его части величину v t.

    Такой простой прием преобразования уравнения (16.1) – это и есть уже начало преобразований Лоренца. Осталось только ввести в это уравнение справа и слева масштабный множитель g, который появился в запаздывающем потенциале (15.36).
    Умножив обе части уравнения (16.3) на масштабный множитель g, мы получаем

    g (xв – v t) = c g (t - b xв/c), (16.4)

    или в сокращенной форме

    x’в = c t’, (16.5)

    где x’в = g (xв – v t) и t’ = g (t - b xв/c), (16.6)

    Преобразования координат и времени (16.6) и есть настоящие преобразования Лоренца, которые были здесь получены так просто. При этом не будем забывать, что уравнение (16.5) – это то же самое уравнение (16.1) для распространения фронта волны, только записанное в новых штрихованных переменных.
    Смысл этих операций свелся к тому, что, сместив уравнение (16.1) по оси OX , как бы переходя в подвижную систему координат наблюдателя, мы одновременно смещаем это уравнение и по оси времени, чтобы исходное уравнение (16.1) не нарушилось. Масштабный же множитель g введен только потому, что он появляется в силовых потенциалах для подвижных частиц при непосредственном их вычислении.
    Во время этих преобразований по осям OY и OZ ничего не происходит, и эти переменные остаются без изменений.
    Для плоской волны получилось все очень просто, однако в случае сферической волны ситуация чуть сложнее. Все дело в том, что электромагнитные поля, которые генерируются элементарными частицами, это - мир сферических волн, поскольку они всегда рождаются в некоторой малой области и распространяются со скоростью света в форме расширяющейся сферы. Уравнение распространения фронта сферической волны имеет вид

    R = c t, (16.7)

  7. По умолчанию

    О КЛАССИЧЕСКОМ СМЫСЛЕ КВАНТОВОЙ МЕХАНИКИ И ЕЕ МЕСТЕ В ЕДИНОЙ ФУНДАМЕНТАЛЬНОЙ ФИЗИКЕ

    http://s6767.narod.ru/naib/naib4/naib4.htm

    По причине несовершенства наших измерительных приборов в атомной физике были получены необычные экспериментальные результаты, которые не укладывались в привычных представлениях физиков начала ХХ века. На этой основе была построена специальная вероятностная математическая теория – квантовая механика, способствующая расчету полученных экспериментальных результатов, а также предсказанию новых.

    В первое время смысл этого математического аппарата был совершенно не понят физиками. Однако в дальнейшем появились некоторые просветы, а вместе с ними и надежда на понимание смысла квантовой механики и ее математического аппарата с волнами де Бройля или пси-функциями.

    Появление квантовой механики в начале ХХ века стимулировало огромный поток дискуссий по поводу природы микрочастиц и силовых полей.

    Явления, которые наблюдались в микромире, были столь необычными, что микрочастицам был приписан особый статус квантовых явлений, в корне отличающихся от явлений, происходящих в привычной для всех классической физике.

    В этом новом мире микрочастиц странности встречаются буквально на каждом шагу. С одной стороны, все микрочастицы совместно с электромагнитными волнами аккуратно соблюдают все законы сохранения классической механики Ньютона, как бы намекая на то, что все они, в общем-то, «ребята неплохие», и их, в принципе, при желании вполне можно понять.

    С другой стороны, и микрочастицы, и электромагнитные волны в атомных явлениях «откалывали» такие квантовые «номера», что привели в замешательство весь научный мир.

    Так, в чем же здесь дело? Попробуем постепенно в этом разобраться.

    Прежде всего, что касается самих экспериментов в микромире. Авторы квантовой теории почему-то решили, что наши измерительные приборы являются идеальными, а все «фокусы» в экспериментах обусловлены исключительно особой природой микрочастиц. Здесь явно содержится логическая ошибка. По их представлению, оказывается виноваты не измерительные приборы с их несовершенством и даже некоторой грубостью, а все дело в особых, неуловимых, «квантовых» свойствах самих микрообъектов, которые никак не поддаются точному измерению.

    Здесь мы имеем яркий пример того, когда пытаются, как говорится, переложить вину с больной головы на здоровую. Неужели хотя бы часть вины за квантовые «чудеса» нельзя переложить на измерительные приборы? Может быть, как раз все наоборот: микрочастицы – самые, что ни есть, классические объекты, а вот с помощью несовершенных приборов мы и выявляем различные квантовые закономерности. И это подозрение не лишено обоснования.

    Обычные лабораторные приборы способны измерять лишь средние значения физических величин. Их в физике назвали «наблюдаемые» величины. При этом усреднение происходит, как правило, по большому числу частиц и по времени. Этот процесс называется набором статистики в эксперименте. Следовательно, в наших экспериментах мы как раз и получаем статистические закономерности в микромире, а отнюдь не характеристики отдельных микрочастиц.

  8. По умолчанию

    БЛУЖДАНИЯ ВОКРУГ «ТОЧЕЧНОГО» ЭЛЕКТРОНА

    http://osh9.narod.ru/bes/blu.htm

    Ознакомимся, например, с точкой зрения Фейнмана в отношении Классической электродинамики [1]: «Сейчас нам предстоит обсудить серьезную трудность - несостоятельность классической электромагнитной теории. Может показаться, что это нарушение, естественно, связано с падением всей классической теории под ударами квантово-механических эффектов. Возьмите классическую механику. Математически это вполне самосогласованная теория, хотя она и опровергается опытом. Однако самое интересное, что классическая теория электромагнетизма неудовлетворительна сама по себе. В ней до сих пор есть трудности, которые связаны с самими идеями теории Максвелла и которые не имеют непосредственного отношения к квантовой механике... А зачем нам заранее беспокоиться об этих трудностях. Ведь квантовая механика все равно изменит законы электродинамики. Не лучше ли подождать и посмотреть, во что превратятся эти трудности после изменений? Однако трудности остаются и после соединения электродинамики с квантовой механикой, так что рассмотрение их сейчас не будет напрасной тратой времени; вдобавок они очень важны с исторической точки зрения... Понятия простых заряженных частиц и электромагнитного поля как-то не согласуются друг с другом... Представьте, что мы взяли простейшую модель электрона, когда весь его заряд q равномерно распределен по поверхности сферы радиусом а. В специальном случае точечного заряда мы можем положить его равным нулю. Теперь вычислим энергию электромагнитного поля... Как только мы переходим к точечному заряду, начинаются все наши беды. И все потому, что энергия поля изменяется обратно пропорционально четвертой степени расстояния, интеграл по объему становится расходящимся, а количество энергии, окружающей точечный заряд, оказывается бесконечным...»

    Итак, сделаем из всего этого некоторый вывод. Оказывается, из-за того, что мы не умеем решать некоторые задачи электродинамики и допускаем логические просчеты, виноватой является классическая физика. Ведь мы уже знаем, что заряд может быть и не точечный, что в природе вряд ли смогут существовать точечные объекты, проявляя себя вполне реально и взаимодействуя с окружающими объектами. Более того, мы даже уже научились вместе со студентами учитывать неточечность зарядов при нахождении запаздывающих потенциалов Льенара-Вихерта. И во всех этих случаях ни о каких бесконечностях не могло быть и речи.

    В этой же работе Фейнман указывает на ошибку, которая может появиться, если неумело обращаться с уравнениями и их решениями. Речь идет о бесконечностях в электродинамике, связанных с центральными полями.

    «Нужно упомянуть еще об одном важном факте. В нашем решении для расходящейся (сферической) волны функция Ф в начале координат бесконечна. Это как-то необычно. Мы бы предпочли иметь такие волновые решения, которые гладки повсюду. Наше решение физически относится к такой ситуации, когда в начале координат располагается источник. Значит, мы нечаянно сделали одну ошибку: наша формула не является решением свободного волнового уравнения повсюду; уравнение с нулем в правой части решено повсюду, кроме начала координат. Ошибка вкралась оттого, что некоторые действия при выводе уравнения при r = 0 "незаконны"».

    Таким образом, мы ясно видим предупреждение о том, чтобы волновые уравнения решались предельно внимательно (авт). Но, несмотря на это, в электродинамике возникла проблема бесконечностей в собственной энергии частиц. И эти бесконечности возникли именно в центральных полях.

  9. По умолчанию

    А. ЭЙНШТЕЙН САМ О СЕБЕ И А. ПАЙС ОБ ЭЙНШТЕЙНЕ

    http://s6767.narod.ru/razn/ein.htm

    А. Эйнштейн. Физика и реальность. М.: Наука, 1965г., с. 54-57,272 –343.
    "Очевидно, в прошлом никогда не была развита теория, которая, подобно квантовой, дала бы ключ к интерпретации и расчету группы столь разнообразных явлений. Несмотря на это я все-таки думаю, что в наших поисках единого фундамента физики эта теория может привести нас к ошибке: она дает, по-моему, неполное представление о реальности. ... Неполнота представления является результатом статистической природы (неполноты) законов".
    " ... неужели какой-нибудь физик действительно верит, что нам не удастся узнать что-либо о важных внутренних изменениях в отдельных системах, об их структуре и причинных связях? ... думать так логически допустимо, но это настолько противоречит моему научному инстинкту, что я не могу отказаться от поисков более полной концепции".
    «Нет сомнения, что в квантовой механике имеется значительный элемент истины и что она станет пробным камнем для любой будущей теоретической основы, из которой она должна будет выведена как частный случай, подобно тому, как электростатика выводится из уравнений Максвелла для электромагнитного поля или термодинамика из классической механики. Однако я не думаю, что квантовая механика является исходной точкой поисков этой основы, точно так же, как нельзя, исходя из термодинамики (или, соответственно, из статистической механики), прийти к основам механики".
    "Если импульс и координаты частиц обладают объективной реальностью, то квантово-механическое описание не является полным описанием." "... квантовая механика это "вторичная система" по отношению к классической картине мира..."
    " Некоторые физики, среди которых нахожусь и я сам, не могут поверить, что мы раз и навсегда должны отказаться от идеи прямого изображения физической реальности в пространстве и времени, или, что мы должны согласиться с мнением, будто явление в природе подобно игре случая».
    "Большие первоначальные успехи теории квантов не могли меня заставить поверить в лежащую в ее основе игру в кости... Физики считают меня старым глупцом, но я убежден, что в будущем развитие физики пойдет в другом направлении, чем до сих пор".
    А. Эйнштейн. Современное состояние теории относительности. 1931 г.
    “Попытки найти единые законы материи, породить теорию поля и квантовую теорию не прекращались. Речь идет о том, чтобы найти структуру пространства, удовлетворяюшую условиям, выдвигаемым обеими теориями. Результатом оказалось кладбище погребенных надежд. Я также с 1928 г. пытался найти решение, но снова отказался от этого пути”. “… выясняется одна трудность, которая, однако, преодолевается новым математическим построением, посредством которого можно вывести соотношение между гипотетическим пятимерным пространством и четырехмерным пространством. Таким образом, удалось охватить логическим единством и гравитационное и электромагнитное поля.
    Однако надежда не сбылась. Я полагал, что если бы удалось найти этот закон, то получилась бы теория, применимая к квантам и материи. Но это не так. Построенная теория, по-видимому, разбивается о проблему материи и квантов. Между обеими идеями все еще сохраняется пропасть”.

  10. По умолчанию

    А. ЭЙНШТЕЙН И НАУЧНОЕ СООБЩЕСТВО

    http://osh9.narod.ru/bes/myt.htm

    А.Л. Шаляпин, В.И. Стукалов

    Путь А. Эйнштейна в науке не был прямым и безоблачным, как это может показаться на основе многочисленных сообщений из средств массовой информации. Скорее наоборот, этот путь был полон драматизма и крутых поворотов.

    Первый крупный успех пришел к Эйнштейну в 25 лет после опубликования им в 1905 г. работы «К электродинамике движущихся тел» [1], где были изложены основные положения и постулаты Специальной теории относительности (СТО). Все это произвело определенный «фурор» в научных кругах.

    Здесь следует сразу оговориться, что эта статья не могла претендовать на фундамент теоретической физики. Даже, более того, предлагаемая Эйнштейном новая теория не была физикой в полном смысле этого слова, а скорее - очень удачной математической инженерной схемой для вычисления различных эффектов при взаимодействии полей и частиц на очень больших скоростях. В этих постулатах отсутствовал принцип причинности, а также хоть какое-нибудь указание на механизмы происходящих физических явлений, так необходимые фундаментальной физике. На эту тему написаны огромные горы литературы, но, к сожалению, без особого продвижения в понимании этих физических явлений.

    Так, М. Планк отмечает [2]: «Из пионеров этой новой области (СТО) следует назвать, прежде всего, Гендрика Антона Лоренца, который открыл понятие относительности времени и ввел его в электродинамику, но не получил из него слишком радикальных выводов …». А надо ли было здесь делать скоропалительные радикальные выводы в то время, когда данная задача только-только начинала решаться? Лоренц своей фундаментальной электронной теорией как раз и старался в полной мере объяснить эти «чудеса природы». Пусть данная задача решалась у Лоренца и не очень быстро, но это, все-таки, гораздо лучше, чем получить в результате «кладбище погребенных надежд» (авт.). Перед этим в 1900 г. М. Планк также предложил математическую схему для вычисления спектра излучения абсолютно черного тела без достаточного физического обоснования своей теории («счастливо угаданная формула Планка»). В дальнейшем судьба сведет этих ученых в острейшей дискуссии на 1 Сольвеевском Конгрессе в 1911 г.

    Принцип относительности до Эйнштейна был детально рассмотрен А. Пуанкаре и Х. Лоренцем [1]. Математическая схема расчетов этих явлений была также предложена Лоренцем и Пуанкаре и пришла к Эйнштейну уже в совершенно готовом виде. В отличие от Эйнштейна Лоренц заострил внимание на физике этих явлений, на основе разрабатываемой им фундаментальной электронной теории с указанием возможных причин и механизмов наблюдаемых эффектов в движущихся телах. Это, все же, больше уже походило на истинную физику, пусть даже еще и не очень совершенную.

    В средствах массовой информации усиленно насаждается идея о том, что связь массы (инерции) тела с его энергией Е = m c 2 является исключительно заслугой Эйнштейна и следует из СТО. На самом деле все обстоит гораздо сложнее. Данная формула неоднократно обсуждалась в среде ведущих физиков (Дж.Дж. Томсон, О. Хэвисайд, Н.А. Умов и др.) до создания СТО. К примеру, Н.А. Умов еще в ХIХ веке видел происхождение такой зависимости из волновых процессов в упругих средах. Это, в конце концов, полностью подтвердилось, причем не из абстрактных искусственных постулатов, а из совершенно простых и очевидных упругих взаимодействий, а также из самой обычной Классической электродинамики и акустики физического вакуума-эфира [4].

+ Ответить в теме

Ваши права

  • Вы не можете создавать новые темы
  • Вы не можете отвечать в темах
  • Вы не можете прикреплять вложения
  • Вы не можете редактировать свои сообщения